Publications

Publications / Conference

Relaxing passivity for human-robot interaction

Buerger, Stephen B.

Robots for high-force interaction with humans face particular challenges to achieve performance and coupled stability. Because available actuators are unable to provide sufficiently high force density and low impedance, controllers for such machines often attempt to mask the robots physical dynamics, though this threatens stability. Controlling for passivity, the state-of-the-art means of ensuring coupled stability, inherently limits performance to levels that are often unacceptable. A controller that imposes passivity is compared to a controller designed by a new method that uses limited knowledge of human dynamics to improve performance. Both controllers were implemented on a testbed, and coupled stability and performance were tested. Results show that the new controller can improve both stability and performance. The different structures of the controllers yield key differences in physical behavior, and guidelines are provided to assist in choosing the appropriate approach for specific applications.