Publications

Publications / Conference Paper

Recovering Power Factor Control Settings of Solar PV Inverters from Net Load Data

Talkington, Samuel; Grijalva, Santiago; Reno, Matthew J.; Azzolini, Joseph A.

Advanced solar PV inverter control settings may not be reported to utilities or may be changed without notice. This paper develops an estimation method for determining a fixed power factor control setting of a behind-the-meter (BTM) solar PV smart inverter. The estimation is achieved using linear regression methods with historical net load advanced metering infrastructure (AMI) data. Notably, the BTM PV power factor setting may be unknown or uncertain to a distribution engineer, and cannot be trivially estimated from the historical AMI data due to the influence of the native load on the measurements. To solve this, we use a simple percentile-based approach for filtering the measurements. A physics-based linear sensitivity model is then used to determine the fixed power factor control setting from the sensitivity in the complex power plane. This sensitivity parameter characterizes the control setting hidden in the aggregate data. We compare several loss functions, and verify the models developed by conducting experiments on 250 datasets based on real smart meter data. The data are augmented with synthetic quasi-static-timeseries (QSTS) simulations of BTM PV that simulate utility-observed aggregate measurements at the load. The simulations demonstrate the reactive power sensitivity of a BTM PV smart inverter can be recovered efficiently from the net load data after applying the filtering approach.