Publications

Publications / Other Report

Reassessing the Market—Computation Interface to Enhance Grid Security and Efficiency

Castillo, Anya

The goal of this project is to reconsider core market and reliability processes that can potentially yield to transformative advances in power grid security, reliability, and efficiency. Current electric power market designs are strongly a function of computing capabilities and limitations that were available in the mid-to-late 1990s, circa deregulation. This includes constructs such as: (1) a 2-tiered day-ahead/real-time market construct; and (2) linearized (“DC”) real power flow approximations in dispatch and pricing. At that time, state-of-the-art computational capabilities could at the limit address deterministic mixed-integer programming formulations of unit commitment (UC) and linear programming formulations of economic dispatch (ED) at limited fidelity and scale. Such constraints forced limited look-ahead time-horizons, crude approximations of AC power flow physics and operations, and artificial partitioning between day-ahead markets, hour(s)-ahead reliability processes, and real-time markets. Consequently, these limitations have resulted in limited security and reliability with increasing out-of-market payments, particularly as uncertainty associated with renewables and distributed energy resources grows.