Publications
Real-time Microgrid Test Bed for Protection and Resiliency Studies
Patel, Trupal; Gadde, Phani; Brahma, Sukumar; Hernandez Alvidrez, Javier H.; Reno, Matthew J.
The integration of renewable and distributed energy resources to the electric power system is expected to increase, particularly at the distribution level. As a consequence, the grid will become more modular consisting of many interconnected microgrids. These microgrids will likely evolve from existing distribution feeders and hence be unbalanced in nature. As the world moves towards cleaner and distributed generation, microgrids that are 100% inverter sourced will become more commonplace. To increase resiliency and reliability, these microgrids will need to operate in both grid-connected and islanded modes. Protection and control of these microgrids needs to be studied in real-time to test and validate possible solutions with hardware-in-the-loop (HIL) and real communication delays. This paper describes the creation of a real-time microgrid test bed based on the IEEE 13-bus distribution system using the RTDS platform. The inverter models with grid-forming and grid-following control schemes are discussed. Results highlighting stable operation, power sharing, and fault response are shown.