Publications

Publications / Journal Article

RDX solubility in TNT at high temperatures

Hobbs, Michael L.; Kaneshige, Michael J.; Todd, Steven T.; Krawietz, Thomas R.

The solubility of RDX (hexahydro-1,3,5-tri-nitro-1,3,5-triazine) in TNT (2,4,6-trinitrotoluene) at elevated temperatures is required to accurately predict the response of Comp-B3 (60:40 RDX:TNT) during accidents involving fire. As the temperature increases, the TNT component melts, the RDX partially dissolves in the liquid TNT, and the remaining RDX melts (203 ∘C) as the Comp-B thermally ignites. In the current work, we used a differential scanning calorimeter (DSC) to estimate the solubility of RDX in TNT at the melting point of RDX. Most DSC measurements of Comp-B3 do not show an RDX melt endotherm. The absence of an endotherm associated with the RDX melt has been interpreted as RDX being completely dissolved in TNT before reaching the melting point. We have observed that the endotherm is not absent, but is masked by exothermic reactions occurring at these elevated temperatures. We have inhibited the exothermic reactions by venting our DSC samples and measuring the RDX melt endotherm in our Comp-B3 samples at about 203 ∘C. Using the measured heat flow associated with the RDX melt and the latent melting enthalpy of RDX, we have approximated the solubility of RDX in TNT to be roughly 50–100 g RDX per 100 g TNT. The broad range is based on corrections for exothermic reactions occurring as the RDX melts.