Publications

Publications / Conference

Radiation effects microscopy for failure analysis of microelectronic devices

Doyle, Barney L.; Dodd, Paul E.; Shaneyfelt, Marty R.; Schwank, James R.

Microelectronic devices in satellites and spacecraft are exposed to high energy cosmic radiation. Furthermore, Earth-based electronics can be affected by terrestrial radiation. The radiation causes a variety of Single Event Effects (SEE) that can lead to failure of the devices. High energy heavy ion beams are being used to simulate both the cosmic and terrestrial radiation to study radiation effects and to ensure the reliability of electronic devices. Broad beam experiments can provide a measure of the radiation hardness of a device (SEE cross section) but they are unable to pinpoint the failing components in the circuit. A nuclear microbeam is an ideal tool to map SEE on a microscopic scale and find the circuit elements (transistors, capacitors, etc.) that are responsible for the failure of the device. In this paper a review of the latest radiation effects microscopy (REM) work at Sandia will be given. Different SEE mechanisms (Single Event Upset, Single Event Transient, etc.) and the methods to study them (Ion Beam Induced Charge (IBIC), Single Event Upset mapping, etc.) will be discussed. Several examples of using REM to study the basic effects of radiation in electronic devices and failure analysis of integrated circuits will be given.