Publications

Publications / Journal Article

Quasistatic Shock Waves: A Mechanism for Nonuniform Compaction in Porous Rock

Olsson, William A.

Recent studies have observed compaction zones pass through porous rock under axisymmetric compression. An initially thin, compacted layer appears at the yield point of the stress-strain curve and then grows by thickening in the direction of maximum compression at constant stress. Strain localization theory has been applied to compaction to explain the formation of these features. This paper describes the growth of the compaction zones, that is, the propagation of their boundaries, in terms of shock wave analysis. The ratio of the applied shortening rate to the velocity of the boundary is related to the porosity change across the boundary. Certain features of the stress-strain curve are explained by the model.