Publications
Quantifying the Impact of Material-Model Error on Macroscale Quantities-of-Interest Using Multiscale a Posteriori Error-Estimation Techniques
Brown, Judith A.; Bishop, Joseph E.
An a posteriori error-estimation framework is introduced to quantify and reduce modeling errors resulting from approximating complex mesoscale material behavior with a simpler macroscale model. Such errors may be prevalent when modeling welds and additively manufactured structures, where spatial variations and material textures may be present in the microstructure. We consider a case where a <100> fiber texture develops in the longitudinal scanning direction of a weld. Transversely isotropic elastic properties are obtained through homogenization of a microstructural model with this texture and are considered the reference weld properties within the error-estimation framework. Conversely, isotropic elastic properties are considered approximate weld properties since they contain no representation of texture. Errors introduced by using isotropic material properties to represent a weld are assessed through a quantified error bound in the elastic regime. An adaptive error reduction scheme is used to determine the optimal spatial variation of the isotropic weld properties to reduce the error bound.