Publications

Publications / Other Report

Pushing the Limits of High-speed X-ray Tomography to See the Unknown

Halls, Benjamin R.; Rahman, Naveed A.; James, Jeremy W.; Reardon, Sam M.; White, Glen W.; Quintana, Enrico C.; Guildenbecher, Daniel R.

First-of-their kind datasets from a high-speed X-ray tomography system were collected, and a novel numerical effort utilizing temporal information to reduce measurement uncertainty was shown. The experimental campaign used three high-speed X-ray imaging systems to collect data at 100 kHz of a scene containing high-velocity objects. The scene was a group of known objects propelled by a 12-gauge shotgun shell reaching speeds of hundreds of meters per second. These data represent a known volume where the individual components are known, with experimental uncertainties that can be used for reconstruction algorithm validation. The numerical effort used synthetic volumes in MATLAB to produce projections along known lines of sight to perform tomographic reconstructions. These projections and reconstructions were performed on a single object at two orientations, representing two timesteps, to increase the reconstruction accuracy.