Publications
Prospects and Limitations of Predicting Fuel Ignition Properties from Low-Temperature Speciation Data
Buras, Zachary; Hansen, Nils H.; Taatjes, Craig A.; Sheps, Leonid S.
Using chemical kinetic modeling and statistical analysis, we investigate the possibility of correlating key chemical "markers"-typically small molecules-formed during very lean (φ ∼0.001) oxidation experiments with near-stoichiometric (φ ∼1) fuel ignition properties. One goal of this work is to evaluate the feasibility of designing a fuel-screening platform, based on small laboratory reactors that operate at low temperatures and use minimal fuel volume. Buras et al. [Combust. Flame 2020, 216, 472-484] have shown that convolutional neural net (CNN) fitting can be used to correlate first-stage ignition delay times (IDTs) with OH/HO2measurements during very lean oxidation in low-T flow reactors with better than factor-of-2 accuracy. In this work, we test the limits of applying this correlation-based approach to predict the low-temperature heat release (LTHR) and total IDT, including the sensitivity of total IDT to the equivalence ratio, φ. We demonstrate that first-stage IDT can be reliably correlated with very lean oxidation measurements using compressed sensing (CS), which is simpler to implement than CNN fitting. LTHR can also be predicted via CS analysis, although the correlation quality is somewhat lower than for first-stage IDT. In contrast, the accuracy of total IDT prediction at φ = 1 is significantly lower (within a factor of 4 or worse). These results can be rationalized by the fact that the first-stage IDT and LTHR are primarily determined by low-temperature chemistry, whereas total IDT depends on low-, intermediate-, and high-temperature chemistry. Oxidation reactions are most important at low temperatures, and therefore, measurements of universal molecular markers of oxidation do not capture the full chemical complexity required to accurately predict the total IDT even at a single equivalence ratio. As a result, we find that φ-sensitivity of ignition delay cannot be predicted at all using solely correlation with lean low-T chemical speciation measurements.