Publications
Projection-based model reduction for finite-element simulations of thermal protection systems
Arienti, Marco A.; Blonigan, Patrick J.; Rizzi, Francesco N.; Tencer, John T.; Howard, Micah A.
Thermal protection system designers rely heavily on computational simulation tools for design optimization and uncertainty quantification. Because high-fidelity analysis tools are computationally expensive, analysts primarily use low-fidelity or surrogate models instead. In this work, we explore an alternative approach wherein projection-based reduced-order models (ROMs) are used to approximate the computationally infeasible high-fidelity model. ROMs are preferable to alternative approximation approaches for high-consequence applications due to the presence of rigorous error bounds. This work presents the first application of ROMs to ablation systems. In particular, we present results for Galerkin and least-squares Petrov-Galerkin ROMs of 1D and 2D ablation system models.