Publications

Publications / SAND Report

Progress in Modeling the 2019 Extended Magnetically Insulated Transmission Line (MITL) and Courtyard Environment Trial at HERMES-III

Cartwright, Keith C.; Pointon, Tim P.; Powell, Troy C.; Grabowski, Theodore C.; Shields, Sidney S.; Sirajuddin, David S.; Jensen, Daniel S.; Renk, Timothy J.; Cyr, Eric C.; Stafford, David S.; Swan, Matthew S.; Mitra, Sudeep M.; McDoniel, William M.; Moore, Christopher H.

This report documents the progress made in simulating the HERMES-III Magnetically Insulated Transmission Line (MITL) and courtyard with EMPIRE and ITS. This study focuses on the shots that were taken during the months of June and July of 2019 performed with the new MITL extension. There were a few shots where there was dose mapping of the courtyard, 11132, 11133, 11134, 11135, 11136, and 11146. This report focuses on these shots because there was full data return from the MITL electrical diagnostics and the radiation dose sensors in the courtyard. The comparison starts with improving the processing of the incoming voltage into the EMPIRE simulation from the experiment. The currents are then compared at several location along the MITL. The simulation results of the electrons impacting the anode are shown. The electron impact energy and angle is then handed off to ITS which calculates the dose on the faceplate and locations in the courtyard and they are compared to experimental measurements. ITS also calculates the photons and electrons that are injected into the courtyard, these quantities are then used by EMPIRE to calculated the photon and electron transport in the courtyard. The details for the algorithms used to perform the courtyard simulations are presented as well as qualitative comparisons of the electric field, magnetic field, and the conductivity in the courtyard. Because of the computational burden of these calculations the pressure was reduce in the courtyard to reduce the computational load. The computation performance is presented along with suggestion on how to improve both the computational performance as well as the algorithmic performance. Some of the algorithmic changed would reduce the accuracy of the models and detail comparison of these changes are left for a future study. As well as, list of code improvements there is also a list of suggested experimental improvements to improve the quality of the data return.