Publications
Probing fundamental properties of matter at extreme pressures and densities on the Z accelerator
The Sandia Z accelerator has become a unique platform to study matter at extreme conditions. The large currents (20 MA, 200-300 ns rise time) and magnetic fields (several MG) produced by Z generate magnetic compression in the multi-Mbar regime, enabling quasi-isentropic compression experiments (ICE) to several Mbar stresses. Thus, the Z platform is useful in determining high stress material isentropes, performing phase transition studies (including rapid solidification), obtaining constitutive property information, and estimating material strength at high stress. Furthermore, the magnetic pressure can also accelerate macroscopic flyer plates to velocities in excess of 30 km/s. Thus, impact experiments can be performed to ultra-high pressures. Furthermore, the adiabatic release response of materials can be investigated through shock and release experiments, allowing hot, dense liquid states to be probed. The Z platform allows a large expanse of the equation of state surface to be explored enabling new and exciting material dynamics experiments. Specific examples from each of the areas mentioned above will be discussed.