Publications
Pressure-driven and free-rise foam flow
Mondy, L.A.; Kropka, Jamie M.; Celina, Mathias C.; Rao, Rekha R.; Brotherton, Christopher M.; Bourdon, Christopher B.; Noble, David R.; Moffat, Harry K.; Grillet, Anne M.; Kraynik, Andrew M.; Leming, Sarah L.
Many weapons components (e.g. firing sets) are encapsulated with blown foams. Foam is a strong lightweight material--good compromise between conflicting needs of structural stability and electronic function. Current foaming processes can lead to unacceptable voids, property variations, cracking, and slipped schedules which is a long-standing issue. Predicting the process is not currently possible because the material is polymerizing and multiphase with changing microstructure. The goals of this project is: (1) Produce uniform encapsulant consistently and improve processability; (2) Eliminate metering issues/voids; (3) Lower residual stresses, exotherm to protect electronics; and (4) Maintain desired properties--lightweight, strong, no delamination/cracking, and ease of removal. The summary of achievements in the first year are: (1) Developed patentable chemical foaming chemistry - TA; (2) Developed persistent non-curing foam for systematic evaluation of fundamental physics of foams--Initial testing of non-curing foam shows that surfactants very important; (3) Identified foam stability strategy using a stacked reaction scheme; (4) Developed foam rheology methodologies and shear apparatuses--Began testing candidates for shear stability; (5) Began development of computational model; and (6) Development of methodology and collection of property measurements/boundary conditions for input to computational model.