Publications
Preliminary results of a dynamic system model for a closed-loop Brayton cycle coupled to a nuclear reactor
Wright, Steven A.; Wright, Steven A.
This paper describes preliminary results of a dynamic system model for a closed-loop Brayton-cycle that is coupled to a nuclear reactor. The current model assumes direct coupling between the reactor and the Brayton-cycle, however only minor additions are required to couple the Brayton-cycle through a heat exchanger to either a heat pipe reactor or a liquid metal cooled reactor. Few reactors have ever been coupled to closed Brayton-cycle systems. As such their behavior under dynamically varying loads, startup and shut down conditions, and requirements for safe and autonomous operation are largely unknown. Sandia National Laboratories has developed steady-state and dynamic models for closed-loop turbo-compressor systems (for space and terrestrial applications). These models are expected to provide a basic understanding of the dynamic behavior and stability of the coupled reactor and power generation loop. The model described in this paper is a lumped parameter model of the reactor, turbine, compressor, recuperator, radiator/waste-heat-rejection system and generator. More detailed models that remove the lumped parameter simplifications are also being developed but are not presented here. The initial results of the model indicate stable operation of the reactor-driven Brayton-cycle system and its ability to load-follow. However, the model also indicates some counter-intuitive behavior for the complete coupled system. This behavior will require the use of a reactor control system to select an appropriate reactor operating temperature that will optimize the performance of the complete spacecraft system. We expect this model and subsequent versions of it to provide crucial information in developing procedures for safe start up, shut down, safe-standby, and other autonomous operating modes. Ultimately, Sandia hopes to validate these models and to perform nuclear ground tests of reactor-driven closed Brayton-cycle systems in our nuclear research facilities.