Publications

Publications / Conference Presenation

Predicting Pit Stability On Additively Manufactured SS316 Via Finite Element Modeling [Slides]

Marshall, Rebecca S.; Katona, Ryan M.; Kelly, Robert G.; Melia, Michael A.

Pit growth and repassivation are complex, with many interconnecting geometric and environmental parameters to consider. Experimentally, it is difficult to isolate these individual parameters to study their effect on the stability of pits. To enable these studies, a finite element modeling approach has been developed to allow systematic testing of parameters that impact a pit’s stability. The specific parameters studied were the cathode diameter, the pit diameter and shape, and the water layer thickness. Hemispherical and rectangular-based pits were studied to determine the impact of the overall pit shape. Pit stability results were compared with mathematical calculations based on the Maximum Pit Model, for both 50% saturation and 100% saturated salt film coverage. Further studies expanded the range of pit geometry to those relevant to additively manufactured surfaces.