Publications

Publications / Conference Poster

Power System Damping Control via Power Injections from Distributed Energy Storage

Copp, David C.; Wilches-Bernal, Felipe; Schoenwald, David A.; Gyuk, Imre

Inter-area oscillations are present in all power systems dispersed over large areas and can have detrimental effects limiting transmission capacity or even causing blackouts. The availability of wide-area measurements in power systems has enabled damping of inter-area oscillations using distributed control methods and system components, such as energy storage devices. We investigate the performance of damping control enabled by energy storage devices distributed throughout an example two-area power system assuming the availability of wide-area measurements of generator machine speeds. The energy storage devices are capable of injecting active power into the system in order to damp inter-area oscillations that occur after a fault in the system. An analysis of the linearized system and several simulations of the nonlinear system with multiple combinations of controlled power injections from energy storage devices are performed. From the results, we quantify and discuss how damping performance depends on the sizes and locations of injections.