Publications

Publications / Journal Article

Power Flow in Pulsed-Power Systems: The Influence of Hall Physics and Modeling of the Plasma-Vacuum Interface

Hamlin, Nathaniel D.; Seyler, Charles E.

Extended-MHD simulations of power flow along a pulsed-power transmission line are performed here in a 2-D axisymmetric geometry, in particular looking at the influence of Hall physics for a transmission line coupled to the liner used in a magnetized liner inertial fusion experiment at Sandia National Labs. It was recently shown by the authors that, for a coaxial transmission line, when Hall physics is included, significantly more blow-off occurs from plasma initialized against the anode compared to the cathode. The mechanism of this blow-off was traced to electron Ex B drift modeled by the Hall term. This result is also observed for the present simulations, and it is shown that the anode blow-off significantly delays the coupling of current to the liner. It is also found that Hall MHD and MHD results are sensitive to the treatment of density floors and the plasma-vacuum interface. Although MHD shows more sensitivity than Hall MHD, correct modeling of the transition from plasma to vacuum remains an unsolved problem that must be addressed in order to improve the predictive capability of fluid-based power flow simulations with regard to energy coupling.