Publications
Polarimetric Interferometric SAR Change Detection Discrimination
A coherent change detection (CCD) image, computed from a geometrically matched, temporally separated pair of complex-valued synthetic aperture radar (SAR) image sets, conveys the pixel-level equivalence between the two observations. Low-coherence values in a CCD image are typically due to either some physical change in the corresponding pixels or a low signal-to-noise observation. A CCD image does not directly convey the nature of the change that occurred to cause low coherence. In this paper, we introduce a mathematical framework for discriminating between different types of change within a CCD image. We utilize the extra degrees of freedom and information from polarimetric interferometric SAR (PolInSAR) data and PolInSAR processing techniques to define a 29-dimensional feature vector that contains information capable of discriminating between different types of change in a scene. We also propose two change-type discrimination functions that can be trained with feature vector training data and demonstrate change-type discrimination on an example image set for three different types of change. Furthermore, we also describe and characterize the performance of the two proposed change-type discrimination functions by way of receiver operating characteristic curves, confusion matrices, and pass matrices.