Publications
Photovoltaic Inverter Momentary Cessation: Recovery Process is Key
Pierre, Brian J.; Elkhatib, Mohamed E.; Hoke, Andy
Momentary cessation refers to an inverter control mode. When the inverter terminal voltage falls below (or exceeds) a certain level, the inverter ceases to output any current, but attempts to maintain (or quickly regain) phase-locked loop synchronization to allow for quick reinjection of current when the voltage recovers to a certain point. This paper presents a photovoltaic (PV) momentary cessation model developed in PSS/E. Simulations are presented for a high voltage transmission line fault contingency in the Hawaiian island of Oahu power system on a validated PSS/E model, modified to include a custom distributed PV inverter model, and different near-future distributed PV penetration levels. Simulations for the island power system include different penetration levels of PV, and different recovery times (ramp rates and delays) after momentary cessation. The results indicate that during low voltage events, such as faults, momentary cessation can produce severe under frequency events, causing significant load shed and shortly thereafter, in some cases, over frequency events that cause generation to trip offline. The problem is exacerbated with higher penetration levels of PV. If momentary cessation is used (as is typically the case for distribution-connected resources), the recovery process after momentary cessation should be carefully considered to minimize impacts to bulk power system stability.