Publications

Publications / SAND Report

Performance and Energy Implications for Heterogeneous Computing Systems: A MiniFE Case Study

Barrett, Richard F.; Tang, Li T.; Hu, Sharon X.

Heterogeneous computing systems, which employ a mix of general-purpose (GP) processors and accelerators such as graphics processing units (GPUs) or Field Programmable Gate Arrays (FPGAs), have the potential to offer much higher performance and lower energy usage than homogeneous systems. However, designing heterogeneous computing systems to achieve high performance and low energy usage is a challenging task. Designs that offer higher performance do not necessarily lead to lower energy consumption. Furthermore, mapping of applications to different computing devices can play a key role in performance and energy tradeoff. In this report, we present a detailed performance and energy study of executing a specific mini-application on different heterogeneous systems. The results show that hardware choices, application implementations, and mapping of applications to hardware can all significantly impact system performance and energy consumption and that the impact on performance and energy can be quite different. This study forms a basis for modeling the interdependencies of program structures and hardware execution units, which could be used to guide design space exploration.