Publications
Penetration through Slots in Cylindrical Cavities Operating at Fundamental Cavity Modes
Campione, Salvatore; Warne, Larry K.; Langston, William L.; Pfeiffer, Robert A.; Martin, Nevin S.; Williams, Jeffery T.; Gutierrez, Roy K.; Reines, Isak C.; Huerta, Jose G.; Dang, Vinh Q.
In this article, we examine the coupling into an electrically short azimuthal slot on a cylindrical cavity operating at fundamental cavity modal frequencies. We first develop a matched bound formulation through which we can gather information for maximum achievable levels of interior cavity fields. Actual field levels are below this matched bound; therefore, we also develop an unmatched formulation for frequencies below the slot resonance to achieve a better insight on the physics of this coupling. Good agreement is observed between the unmatched formulation, full-wave simulations, and experimental data, providing a validation of our analytical models. We then extend the unmatched formulation to treat an array of slots, found again in good agreement with full-wave simulations. These analytical models can be used to investigate ways to mitigate electromagnetic interference and electromagnetic compatibility effects within cavities.