Publications
Particle resuspension simulation capability to substantiate DOE-HDBK-3010 Data
Voskuilen, Tyler V.; Pierce, Flint P.; Brown, Alexander B.; Gelbard, Fred G.; Louie, David L.
In this work we have presented a particle resuspension model implemented in the SNL code SIERRA/Fuego, which can be used to model particle dispersal and resuspension from surfaces. The method demonstrated is applicable to a class of particles, but would require additional parametric fits or physics models for extension to other applications, such as wetted particles or walls. We have demonstrated the importance of turbulent variations in the wall shear stress when considering resuspension, and implemented both shear stress variation models and stochastic resuspension models (not shown in this work). These models can be used in simulations with of physically realistic scenarios to augment lab-scale DOE Handbook data for airborne release fractions and respirable fractions in order to provide confidences for safety analysts and facility designers to apply in their analyses at DOE sites. Future work on this topic will involve validation of the presented model against experimental data and extension of the empirical models to be applicable to different classes of particles and surfaces.