Publications

Publications / Journal Article

Particle clustering effects on damage mechanisms in elastomeric syntactic foams

Croom, Brendan P.; Jin, Helena; Carroll, Jay D.; Long, Kevin N.; Li, Xiaodong

To elucidate the damage mechanisms in syntactic foams with hollow glass microballoon (GMB) reinforcement and elastomer matrices, in situ X-ray computed tomography mechanical testing was performed on syntactic foams with increasing GMB volume fraction. Image processing and digital volume correlation techniques identified very different damage mechanisms compared to syntactic foams with brittle matrices. In particular, the prevailing mechanism transitioned from dispersed GMB collapse at low volume fraction to clustered GMB collapse at high volume fraction. Moreover, damage initiated and propagated earlier in closely-packed GMBs for all specimens. Both of these trends were attributed to increased interaction between closely-packed GMBs. This was confirmed by statistical analysis of GMB damage, which identified a consistent, inverse relationship between the probability of survival and the local coordination number (Nneighbor) across all specimens.