Publications
Optimization of PDC drill bit performance utilizing high-speed, real-time downhole data acquired under a cooperative research and development agreement
Roberts, T.S.; Schen, A.E.; Wise, Jack L.
PDC drill bit performance has been greatly improved over the past three decades by innovations in bit design and how these designs are applied. The next leap forward is most likely to come from using high-speed, real-time downhole data to optimize the performance of these sophisticated bits on an application-by-application basis. By effectively managing conditions of lateral, axial and torsional acceleration, damage to cutting structures can be minimized for improved penetration rates. Avoiding these damaging vibrations is essential to increasing bit durability and improving overall drilling economics. This paper describes one set of independent drilling optimization results obtained as part of a series of controlled demonstrations of PDC bits. Sandia National Laboratories on behalf of the U. S. Department of Energy (DOE) managed this work. The effort was organized as a Cooperative Research and Development Agreement (CRADA) established between Sandia and four bit manufacturers with DOE funding and in-kind contributions by the industry partners. The goal of this CRADA was to demonstrate drag bit performance in formations with degrees of hardness typical of those encountered while drilling geothermal wells. The test results indicate that the surface weight-on-bit (WOB), revolutions per minute (RPM) and torque readings traditionally used to guide adjustments in the drilling parameters do not always provide the true picture of what is really taking place at the bit. Instead, a holistic approach combining traditional methods of optimization together with high-speed, real-time data enables far better decisions for improving bit performance and avoiding damaging situations that may have otherwise gone unnoticed.