Publications
Optimal Electric Grid Black Start Restoration Subject to Intentional Threats
Stamber, Kevin L.; Arguello, Bryan A.; Garrett, Richard A.; Beyeler, Walter E.; Doyle, Casey L.; Ojetola, Samuel; Schoenwald, David A.
Efficient restoration of the electric grid from significant disruptions – both natural and manmade – that lead to the grid entering a failed state is essential to maintaining resilience under a wide range of threats. Restoration follows a set of black start plans, allowing operators to select among these plans to meet the constraints imposed on the system by the disruption. Restoration objectives aim to restore power to a maximum number of customers in the shortest time. Current state-of-the-art for restoration modeling breaks the problem into multiple parts, assuming a known network state and full observability and control by grid operators. These assumptions are not guaranteed under some threats. This paper focuses on a novel integration of modeling and analysis capabilities to aid operators during restoration activities. A power flow-informed restoration framework, comprised of a restoration mixed-integer program informed by power flow models to identify restoration alternatives, interacts with a dynamic representation of the grid through a cognitive model of operator decision-making, to identify and prove an optimal restoration path. Application of this integrated approach is illustrated on exemplar systems. Validation of the restoration is performed for one of these exemplars using commercial solvers, and comparison is made between the steps and time involved in the commercial solver, and that required by the restoration optimization in and of itself, and by the operator model in acting on the restoration optimization output. Publications and proposals developed under this work, along with a path forward for additional expansion of the work, and summary of what was achieved, are also documented.