Publications

Publications / Journal Article

Optical magnetic mirrors without metals

Liu, Sheng; Sinclair, Michael B.; Mahony, Thomas S.; Jun, Young C.; Campione, Salvatore; Ginn, James; Bender, Daniel A.; Wendt, J.R.; Ihlefeld, Jon I.; Clem, Paul G.; Wright, Jeremy B.; Brener, Igal B.

The reflection of an optical wave from metal, arising from strong interactions between the optical electric field and the free carriers of the metal, is accompanied by a phase reversal of the reflected electric field. A far less common route to achieving high reflectivity exploits strong interactions between the material and the optical magnetic field to produce a “magnetic mirror” that does not reverse the phase of the reflected electric field. At optical frequencies, the magnetic properties required for strong interaction can be achieved only by using artificially tailored materials. Here, we experimentally demonstrate, for the first time to the best of our knowledge, the magnetic mirror behavior of a low-loss all-dielectric metasurface at infrared optical frequencies through direct measurements of the phase and amplitude of the reflected optical wave. The enhanced absorption and emission of transverse-electric dipoles placed close to magnetic mirrors can lead to exciting new advances in sensors, photodetectors, and light sources.