Publications

Publications / Conference

On the development of a subgrid CFD model for fire extinguishment

Tieszen, Sheldon R.; Black, Amalia R.

A subgrid model is presented for use in CFD fire simulations to account for thermal suppressants and strain. The extinguishment criteria is based on the ratio of a local fluid-mechanics time-scale to a local chemical time-scale compared to an empirically-determined critical Damkohler number. Local extinction occurs if this time scale is exceeded, global fire extinguishment occurs when local extinction has occurred for all combusting cells. The fluid mechanics time scale is based on the Kolmogorov time scale and the chemical time scale is based on blowout of a perfectly stirred reactor. The input to the reactor is based on cell averaged temperatures, assumed stoichiometric fuel/air composition, and cell averaged suppressant concentrations including combustion products. A detailed chemical mechanism is employed. The chemical time-scale is precalculated and mixing rules are used to reduce the composition space that must be parameterized. Comparisons with experimental data for fire extinguishment in a flame-stabilizing, backward-facing step geometry indicates that the model is conservative for this condition.