Publications

Publications / Conference Poster

On-sun testing of an advanced falling particle receiver system

Ho, Clifford K.; Christian, Joshua M.; Yellowhair, Julius; Siegel, Nathan; Jeter, Sheldon; Golob, Matthew; Abdel-Khalik, Said I.; Nguyen, Clayton; Al-Ansary, Hany

A 1 MWth high-temperature falling particle receiver was constructed and tested at the National Solar Thermal Test Facility at Sandia National Laboratories. The continuously recirculating system included a particle elevator, top and bottom hoppers, and a cavity receiver that comprised a staggered array of porous chevron-shaped mesh structures that slowed the particle flow through the concentrated solar flux. Initial tests were performed with a peak irradiance of ∼300 kW/m2 and a particle mass flow rate of 3.3 kg/s. Peak particle temperatures reached over 700 °C near the center of the receiver, but the particle temperature increase near the sides was lower due to a non-uniform irradiance distribution. At a particle inlet temperature of ∼440 °C, the particle temperature increase was 27 °C per meter of drop length, and the thermal efficiency was ∼60% for an average irradiance of 110 kW/m2. At an average irradiance of 211 kW/m2, the particle temperature increase was 57.1 °C per meter of drop length, and the thermal efficiency was ∼65%. Tests with higher irradiances are being performed and are expected to yield greater particle temperature increases and efficiencies.