Publications

Publications / Conference

On-chip monitoring of MEMS gear motion

Swanson, Scot E.; Walraven, J.A.; Dohner, Jeffrey L.

We have designed and fabricated a polysilicon sidewall-contact motion monitor that fits in between the teeth of a MEMS gear. The monitor has a center grounded member that is moved into contact with a pad held at voltage. When observing motion, however, the monitor fails after only a few actuations. A thorough investigation of the contacting interfaces revealed that for voltages > 5 V with a current limit of 100 pA, the main conduction process is Fowler-Nordheim tunneling. After a few switch cycles, the polysilicon interfaces became insulating. This is shown to be a permanent change and the suspected mechanism is field-induced oxidation of the asperity contacts. To reduce the effects of field-induced oxidation, tests were performed at 0.5 V and no permanent insulation was observed. However, the position of the two contacting surfaces produced three types of conduction processes: Fowler-Nordheim tunneling, ohmic, and insulator, which were observed in a random order during switch cycling. The alignment of contact asperities produced this positional effect.