Publications
Observation and simulation of motion and deformation for impact-loaded metal cylinders
Hickman, Randy J.; Wise, Jack L.; Smith, J.A.; Mersch, J.P.; Robino, C.V.; Arguello, Jose G.
Complementary gas-gun experiments and computational simulations have examined the time-resolved motion and post-mortem deformation of cylindrical metal samples subjected to impact loading. The effect of propagation distance on a compressive waveform generated in a sample by planar impact at one end was determined using a velocity interferometer to track the longitudinal motion at the center of the opposing rear (i.e., free) surface. Samples (25.4-mm diameter) were fabricated from aluminum (types 6061 and 7075), copper (OFHC = oxygen free, high conductivity), stainless steel (type 316), and cobalt alloy L-605 (AMS 5759; also referenced as Haynes®25 alloy). For each material, waveforms obtained for a 25.4-mm long cylinder corresponded to two-dimensional strain at the measurement point. The wave-profile data have been analyzed to (i) establish key dynamic material modeling parameters, (ii) assess the functionality of the Sierra Solid Mechanics-Presto (Sierra/SM) code, and (iii) identify the need for additional testing, material modeling, and/or code development. The results of subsequent simulations have been compared to benchmark recovery experiments that showed the residual plastic deformation incurred by cylinders following end, side, and corner impacts. ∗Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.