Publications

Publications / Journal Article

O-d energetics scaling models for Z-pinch-driven hohlraums

Cuneo, M.E.; Vesey, Roger A.

Wire array Z-pinches on the Z accelerator provide the most intense laboratory source of soft x-rays in the world. The unique combination of a highly-Planckian radiation source with high x-ray production efficiency (15% wall plug), large x-ray powers and energies ( >150 TW, {ge}1 MJ in 7 ns), large characteristic hohlraum volumes (0.5 to >10 cm{sup 3}), and long pulse-lengths (5 to 20 ns) may make Z-pinches a good match to the requirements for driving high-yield scale ICF capsules with adequate radiation symmetry and margin. The Z-pinch driven hohlraum approach of Hammer and Porter [Phys.Plasmas, 6, 2129(1999)] may provide a conservative and robust solution to the requirements for high yield, and is currently being studied on the Z accelerator. This paper describes a multiple region, 0-d hohlraum energetic model for Z-pinch driven hohlraums in four configurations. The authors observe consistency between the models and the measured x-ray powers and hohlraum wall temperatures to within {+-}20% in flux, for the four configurations.