Publications

Publications / Conference

Numerical simulation of sintering at multiple length scales

Tikare, Veena T.; Tikare, Veena T.; Braginsky, Michael V.; Garino, Terry J.; Arguello, Jose G.

Sintering is one of the oldest processes used by man to manufacture materials dating as far back as 12,000 BC. While it is an ancient process, it is also necessary for many modern technologies such a multilayered ceramic packages, wireless communication devices, and many others. The process consists of thermally treating a powder or compact at a temperature below the melting point of the main constituent, for the purpose of increasing its strength by bonding together of the particles. During sintering, the individual particles bond, the pore space between particles is eliminated, the resulting component can shrinks by as much as 30 to 50% by volume, and it can distort its shape tremendously. Being able to control and predict the shrinkage and shape distortions during sintering has been the goal of much research in material science. And it has been achieved to varying degrees by many. The object of this project was to develop models that could simulate sintering at the mesoscale and at the macroscale to more accurately predict the overall shrinkage and shape distortions in engineering components. The mesoscale model simulates microstructural evolution during sintering by modeling grain growth, pore migration and coarsening, and vacancy formation, diffusion and annihilation. In addition to studying microstructure, these simulation can be used to generate the constitutive equations describing shrinkage and deformation during sintering. These constitutive equations are used by continuum finite element simulations to predict the overall shrinkage and shape distortions of a sintering crystalline powder compact. Both models will be presented. Application of these models to study sintering will be demonstrated and discussed. Finally, the limitations of these models will be reviewed.