Publications
Nonlinear Shear Rheology of Entangled Polymer Rings
Parisi, Daniele; Costanzo, Salvatore; Jeong, Youncheol; Ahn, Junyoung; Chang, Taihyun; Vlassopoulos, Dimitris; Halverson, Jonathan D.; Kremer, Kurt; Ge, Ting; Rubinstein, Michael; Grest, Gary S.; Srinin, Watee; Grosberg, Alexander Y.
Steady-state shear viscosity (γ˙) of unconcatenated ring polymer melts as a function of the shear rate γ˙ is studied by a combination of experiments, simulations, and theory. Experiments using polystyrenes with Z ≈ 5 and Z ≈ 11 entanglements indicate weaker shear thinning for rings compared to linear polymers exhibiting power law scaling of shear viscosity ∼γ˙-0.56 ± 0.02, independent of chain length, for Weissenberg numbers up to about 102. Nonequilibrium molecular dynamics simulations using the bead-spring model reveal a similar behavior with ∼γ˙-0.57 ± 0.08 for 4 ≤ Z ≤ 57. Viscosity decreases with chain length for high γ˙. In our experiments, we see the onset of this regime, and in simulations, which we extended to Wi ∼104, the nonuniversality is fully developed. In addition to a naive scaling theory yielding for the universal regime ∼γ˙-0.57, we developed a novel shear slit model explaining many details of observed conformations and dynamics as well as the chain length-dependent behavior of viscosity at large γ˙. The signature feature of the model is the presence of two distinct length scales: the size of tension blobs and much larger thickness of a shear slit in which rings are self-consistently confined in the velocity gradient direction and which is dictated by the size of a chain section with relaxation time 1/γ˙. These two length scales control the two normal stress differences. In this model, the chain length-dependent onset of nonuniversal behavior is set by tension blobs becoming as small as about one Kuhn segment. This model explains the approximate applicability of the Cox-Merz rule for ring polymers.