Publications

Publications / Journal Article

Nonlinear Interface Reduction for Time-Domain Analysis of Hurty/Craig-Bampton Superelements with Frictional Contact

Hughes, Patrick J.; Kuether, Robert J.

Virtual prototyping in engineering design rely on modern numerical models of contacting structures with accurate resolution of interface mechanics, which strongly affect the system-level stiffness and energy dissipation due to frictional losses. High-fidelity modeling within the localized interfaces is required to resolve local quantities of interest that may drive design decisions. The high-resolution finite element meshes necessary to resolve inter-component stresses tend to be computationally expensive, particularly when the analyst is interested in response time histories. The Hurty/Craig-Bampton (HCB) transformation is a widely used method in structural dynamics for reducing the interior portion of a finite element model while having the ability to retain all nonlinear contact degrees of freedom (DOF) in physical coordinates. These models may still require many DOF to adequately resolve the kinematics of the interface, leading to inadequate reduction and computational savings. This study proposes a novel interface reduction method to overcome these challenges by means of system-level characteristic constraint (SCC) modes and properly orthogonal interface modal derivatives (POIMDs) for transient dynamic analyses. Both SCC modes and POIMDs are computed using the reduced HCB mass and stiffness matrices, which can be directly computed from many commercial finite element analysis software. Comparison of time history responses to an impulse-type load in a mechanical beam assembly indicate that the interface-reduced model correlates well with the HCB truth model. Localized features like slip and contact area are well-represented in the time domain when the beam assembly is loaded with a broadband excitation. The proposed method also yields reduced-order models with greater critical timestep lengths for explicit integration schemes.