Publications

Publications / Journal Article

NMR spin diffusion measurements in disordered polymers: Insights and limitations

Sorte, Eric G.; Frischknecht, Amalie L.; Alam, Todd M.

Nuclear magnetic resonance (NMR) spin diffusion measurements have been widely used to estimate domain sizes in a variety of polymer materials. In cases where the domains are well-described as regular, repeating structures (e.g., lamellar, cylindrical channels, monodispersed spherical domains), the domain sizes estimated from NMR spin diffusion experiments agree with the characteristic length scales obtained from small-angle x-ray scattering and microscopy. In our laboratory, recent NMR spin diffusion experiments for hydrated sulfonated Diels Alder poly(phenylene) (SDAPP) polymer membranes have revealed that assuming a simple structural model can often misrepresent or overestimate the domain size in situations where more complex and disordered morphologies exist. Molecular dynamics simulations of the SDAPP membranes predict a complex heterogeneous hydrophilic domain structure that varies with the degree of sulfonation and hydration and is not readily represented by a simple repeating domain structure. This heterogeneous morphology results in NMR-measured domain sizes that disagree with length scales estimated from the ionomer peak in scattering experiments. Here we present numerical NMR spin diffusion simulations that show how structural disorder in the form of domain size distributions or domain clustering can significantly impact the spin diffusion analysis and estimated domain sizes. Simulations of NMR spin diffusion with differing domain size distributions and domain clustering are used to identify the impact of the heterogeneous domain structure and highlight the limitations of using NMR spin diffusion techniques for irregular structures.