Publications

Publications / SAND Report

Near-Field Imaging of Shallow Chemical Detonations in Granite using Change Detection Methods of Borehole Seismic Data

Schwering, Paul C.; Hoots, Charles R.; Knox, Hunter A.; Abbott, Robert A.; Preston, Leiph A.

As part of the Source Physics Experiment (SPE) Phase I shallow chemical detonation series, multiple surface and borehole active-source seismic campaigns were executed to perform high- resolution imaging of seismic velocity changes in the granitic substrate. Cross-correlation data processing methods were implemented to efficiently and robustly perform semi-automated change detection of first-arrival times between campaigns. The change detection algorithm updates the arrival times, and consequently the velocity model, of each campaign. The resulting tomographic imagery reveals the evolution of the subsurface velocity structure as the detonations progressed. ACKNOWLEDGEMENTS The authors thank Dan Herold, Bob White, Kale Mc Lin, Ryan Emmit, Maggie Townsend, Curtis Obi, Fred Helsel, Rebekah Lee, Liam Toney, Matt Geuss, and Josh Feldman for their direct and invaluable contributions to this work. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. Note that a more detailed manuscript for this work is being prepared for publication in the Bulletin of the Seismological Society of America (BSSA).