Publications

Publications / Conference

Nanoscale morphology development in the passive oxide on aluminum and the relationship to pitting

Zavadil, Kevin R.; Ohlhausen, J.A.; Kotula, Paul G.

Nanometer scale morphological changes in the passive oxide on aluminum have been tracked as a function of polarization in an aqueous, moderate chloride electrolyte. Nanoscale void formation has been detected and characterized in the passive oxide on both single crystal Al and nanocrystalline Al thin films. Void nucleation occurs at the metal/oxide interface and growth proceeds into the oxide. This void formation process correlates with the faradaic charge density produced due to Al oxidation indicating that the voids result from point defect saturation at the Al/oxide interface. The shape factors for the voids are inconsistent with two leading pit initiation models where stable pitting is argued to result from disruption of the remnant oxide over a void or void-like structures. Several experimental observations and measurements suggest this predominant structural feature is not sufficient alone in determining the stability of the passive oxide toward stable pitting. An experiment is proposed and conducted to clearly establish causality between voids and stable pitting, however, the results are inclusive.