Publications
Nanomodified Methyl Methacrylate Polymer for Sealing of Microscale Defects in Wellbore Systems
Genedy, Moneeb; Matteo, Edward N.; Stenko, Michael; Stormont, John C.; Taha, Mahmoud R.
Microscale defects (microannuli) at the steel-cement and rock-cement interfaces are a major cause of failure in the integrity of wellbore systems. Microscale defects/microcracks as small as 30 μm are sufficient to create a significant leakage pathway for fluids. In this paper, the authors propose the use of nanomodified methyl methacrylate (NM-MMA) polymer as a seal material for 30-μm microcracks. Four materials were evaluated for their ability to serve as an effective seal material to seal 30-μm microcracks: microfine cement, epoxy, methyl methacrylate (MMA), and NM-MMA incorporating 0.5% by weight aluminum nanoparticles (ANPs). The seal materials' bond strengths with shale were investigated using push-out tests. In addition, the ability to flow fluid through the microcracks was investigated using sagittal microscopic images. Viscosity, surface tension, and contact angle measurements explain the superior ability of MMA seal materials to flow into very thin microcracks compared with other materials. Post-test analysis shows MMA repair materials are capable of completely filling the microcracks. In addition, incorporating ANPs in MMA resulted in significant improvement in seal material ductility. Dynamic mechanical analysis (DMA) showed that incorporating ANPs in MMA reduced the creep compliance and improved creep recovery of NM-MMA. X-ray diffraction (XRD) analysis shows that incorporating ANPs in MMA resin increases the degree of polymer crystallization, resulting in significant improvement in seal material ductility.