Publications

Publications / Conference

Multivariate curve resolution for the analysis of remotely sensed thermal infrared hyperspectral images

Stork, Chris L.; Keenan, Michael R.; Haaland, David M.

While hyperspectral imaging systems are increasingly used in remote sensing and offer enhanced scene characterization relative to univariate and multispectral technologies, it has proven difficult in practice to extract all of the useful information from these systems due to overwhelming data volume, confounding atmospheric effects, and the limited a priori knowledge regarding the scene. The need exists for the ability to perform rapid and comprehensive data exploitation of remotely sensed hyperspectral imagery. To address this need, this paper describes the application of a fast and rigorous multivariate curve resolution (MCR) algorithm to remotely sensed thermal infrared hyperspectral images. Employing minimal a priori knowledge, notably non-negativity constraints on the extracted endmember profiles and a constant abundance constraint for the atmospheric upwelling component, it is demonstrated that MCR can successfully compensate thermal infrared hyperspectral images for atmospheric upwelling and, thereby, transmittance effects. We take a semi-synthetic approach to obtaining image data containing gas plumes by adding emission gas signals onto real hyperspectral images. MCR can accurately estimate the relative spectral absorption coefficients and thermal contrast distribution of an ammonia gas plume component added near the minimum detectable quantity.