Publications

Publications / Journal Article

Multiresolution Localization with Temporal Scanning for Super-Resolution Diffuse Optical Imaging of Fluorescence

Bentz, Brian Z.; Lin, Dergan; Patel, Justin A.; Webb, Kevin J.

A super-resolution optical imaging method is presented that relies on the distinct temporal information associated with each fluorescent optical reporter to determine its spatial position to high precision with measurements of heavily scattered light. This multiple-emitter localization approach uses a diffusion equation forward model in a cost function, and has the potential to achieve micron-scale spatial resolution through centimeters of tissue. Utilizing some degree of temporal separation for the reporter emissions, position and emission strength are determined using a computationally efficient temporal-scanning multiresolution algorithm. The approach circumvents the spatial resolution challenges faced by earlier optical imaging approaches by using a diffusion equation forward model, and is promising for in vivo applications. For example, in principle, the method could be used to localize individual neurons firing throughout a rodent brain, enabling the direct imaging of neural network activity.