Publications

Publications / Journal Article

Multilayered Network Models for Security: Enhancing System Security Engineering with Orchestration

Williams, Adam D.

Security engineering approaches can often focus on a particular domain—physical security, cyber security, or personnel security, for example. Yet, security systems engineering consistently faces challenges requiring socio-technical solutions to address evolving and dynamic complexity. While some drivers of this complexity stem from complex risk environments, innovative adversaries, and disruptive technologies, other drivers are endogenous and emerge from the interactions across security engineering approaches. In response, INCOSE's Systems Security Working Group identified the need to better coordinate “disparate security solutions [that] operate independently” as one of eleven key concepts in their IS21 FuSE Security Roadmap. From this perspective, this need for “security orchestration” aligns with the perspective that security is a property that emerges from interactions within complex systems. Current efforts at Sandia National Laboratories are developing a systems security engineering approach that describes high consequence facility (HCF) security as a multidomain set of interacting layers. The result is a multilayered network (MLN)-based approach that captures the interactions between infrastructure, physical components, digital components, and humans in nuclear security systems. This article will summarize the MLN-based approach to HCF security and describe two preliminary results demonstrating potential benefits from incorporating interactions across disparate security solutions. Here, leveraging the logical structure of networks, this MLN model-based approach provides an example of how security orchestration provides enhanced systems security engineering solutions.