Publications
Multi-fidelity thermal modeling of laser powder bed additive manufacturing
Laser powder bed fusion (LPBF) Additive manufacturing (AM) has attracted interest as an agile method of building production metal parts to reduce design-build-test cycle times for systems. However, predicting part performance is difficult due to inherent process variabilities. This makes qualification challenging. Computational process models have attempted to address some of these challenges, including mesoscale, full physics models and reduced fidelity conduction models. The goal of this work is credible multi-fidelity modeling of the LPBF process by investigating methods for estimating the error between models of two different fidelities. Two methods of error estimation are investigated, adjoint-based error estimation and Bayesian calibration. Adjoint-based error estimation is found to effectively bounding the error between the two models, but with very conservative bounds, making predictions highly uncertain. Bayesian parameter calibration applied to conduction model heat source parameters is found to effectively bound the observed error between the models for melt pool morphology quantities of interest. However, the calibrations do not effectively bound the error in heat distribution.