Publications
Morphology and proton diffusion in a coarse-grained model of sulfonated poly(phenylenes)
Clark, Jennifer A.; Santiso, Erik E.; Frischknecht, Amalie F.
A coarse-grained model previously used to simulate Nafion using dissipative particle dynamics (DPD) is modified to describe sulfonated Diels-Alder poly(phenylene) (SDAPP) polymers. The model includes a proton-hopping mechanism similar to the Grotthuss mechanism. The intramolecular parameters for SDAPP are derived from atomistic molecular dynamics (MD) simulation using the iterative Boltzmann inversion. The polymer radii of gyration, domain morphologies, and cluster distributions obtained from our DPD model are in good agreement with previous atomistic MD simulations. As found in the atomistic simulations, the DPD simulations predict that the SDAPP nanophase separates into hydrophobic polymer domains and hydrophilic domains that percolate through the system at sufficiently high sulfonation and hydration levels. Increasing sulfonation and/or hydration leads to larger proton and water diffusion constants, in agreement with experimental measurements in SDAPP. In the DPD simulations, the proton hopping (Grotthuss) mechanism becomes important as sulfonation and hydration increase, in qualitative agreement with experiment. The turning on of the hopping mechanism also roughly correlates with the point at which the DPD simulations exhibit clear percolated, hydrophilic domains, demonstrating the important effects of morphology on proton transport.