Publications
Monte Carlo simulations of phosphate polyhedron connectivity in glasses
Monte Carlo (MC) simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional (2D) exchange and double-quantum (2Q) nuclear magnetic resonance (NMR) experiments of phosphate glasses. These MC simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.