Publications

Publications / Journal Article

Molecular Origin of Wettability Alteration of Subsurface Porous Media upon Gas Pressure Variations

Ho, Tuan A.; Wang, Yifeng

Upon extraction/injection of a large quantity of gas from/into a subsurface system in shale gas production or carbon sequestration, the gas pressure varies remarkably, which may significantly change the wettability of porous media involved. Mechanistic understanding of such changes is critical for designing and optimizing a related subsurface engineering process. Using molecular dynamics simulations, we have calculated the contact angle of a water droplet on various solid surfaces (kerogen, pyrophyllite, calcite, gibbsite, and montmorillonite) as a function of CO2 or CH4 gas pressure up to 200 atm at a temperature of 300 K. The calculation reveals a complex behavior of surface wettability alteration by gas pressure variation depending on surface chemistry and structure, and molecular interactions of fluid molecules with surfaces. As the CO2 gas pressure increases, a partially hydrophilic kerogen surface becomes highly hydrophobic, while a calcite surface becomes more hydrophilic. Considering kerogen and calcite being the major components of a shale formation, we postulate that the wettability alteration of a solid surface induced by a gas pressure change may play an important role in fluid flows in shale gas production and geological carbon sequestration.