Publications
Molecular dynamics simulations of displacement cascades in GaAs
The quantification of the production of primary defects via displacement cascades is an important ingredient in the prediction of the influence of radiation on the performance of electronic components in radiation environments. Molecular dynamics simulations of displacement cascades are performed for GaAs The interatomic interactions are described using a recently proposed Bond Order Potential, and a simple model of electronic stopping is incorporated. The production of point defects is quantified as a function of recoil energy and recoil species. Correlations in the point defects are examined. There are a large number of anti-site defects nearest-neighbor pairs as well as di-vacancies and larger order vacancy clusters. Radiation damage and ion implantation in materials have been studied via molecular dynamics for many years. A significant challenge in these simulations is the detailed identification and quantification of the primary defect production. For the present case of a compound semiconductor, GaAs, there are a larger number of possible point defects compared to elemental materials; two types of vacancies, two types of interstitials and antisite defects. This is further complicated by the fact that, in addition to the formation of point defects, amorphous zones may also be created. The goal of the current work is to quantify the production of primary defects in GaAs due to radiation exposures. This information will be used as part of an effort to predict the influence of radiation environments on the performance of electronic components and circuits. The data provide the initial state for continuum-level analysis of the temporal evolution of defect populations. For this initial state, it is important to know both the number of the various point defects that may be produced as well as the initial spatial correlations between the primary defects. The molecular dynamics simulations employ a recently developed Bond Order Potential (BOP) for GaAs. The analysis of the resulting atomic configurations follows a generalization of methods presented previously for elemental Si. The number of point defects of various types, exclusive of the amorphous zones, is predicted as a function of recoil energy. It is also shown that certain primary point defects are initially formed in binary or larger clusters.