Publications

Publications / Conference

Molecular dynamics simulation of layered double hydroxides

Cygan, Randall T.; Cygan, Randall T.

The interlayer structure and the dynamics of Cl{sup {minus}} ions and H{sub 2}O molecules in the interlayer space of two typical LDH [Layered Double Hydroxide] phases were investigated by molecular dynamics computer simulations. The simulations of hydrocalumite, [Ca{sub 2}Al(OH){sub 6}]Cl{center_dot}2H{sub 2}O reveal significant dynamic disorder in the orientations of interlayer water molecules. The hydration energy of hydrotalcite, [Mg{sub 2}Al(0H){sub 6}]Cl{center_dot}nH{sub 2}O, is found to have a minimum at approximately n = 2, in good agreement with experiment. The calculated diffusion coefficient of Cl{sup {minus}} as an outer-sphere surface complex is almost three times that of inner-sphere Cl{sup {minus}}, but is still about an order of magnitude less than that of Cl{sup {minus}} in bulk solution. The simulations demonstrate unique capabilities of combined NMR and molecular dynamics studies to understand the structure and dynamics of surface and interlayer species in mineral/water systems.