Publications

Publications / Conference Poster

Modeling thermal transients of bulk particle lifting systems with CFD simulations

Cleal, Matthew; Ho, Clifford K.

Computational Fluid Dynamics modeling of two different high-temperature particle lifting systems was done in order to be able to capture the thermal behavior of these systems. The two lifting mechanism modeled were a closed bucket elevator that carries the particles up a shaft with a conveyor belt of buckets, and a skip hoist that goes through a cycle of loading, lifting, unloading, and lowering. Both of the modeled systems were subject to a validation process, where the bucket elevator was compared to IR images taken of a real bucket elevator in use under high temperature conditions, and the skip hoist was compared to a 1-D MATLAB model using the heat equation. Both models showed reasonable validation results, and therefore an insulation thickness study was done on both models in order to show the capability of using Computational Fluid Dynamics tools for analysis on these types of systems as a way to inform design decisions. The results were able to show the relationship between increased insulation and lower particle temperature loss of the systems and was able to do so for both steady state and transient results.