Publications

Publications / Journal Article

Modeling rarefied gas chemistry with QuiPS, a novel quasi-particle method

Poondla, Yasvanth; Goldstein, David; Varghese, Philip; Clarke, Peter; Moore, Christopher H.

The goal of this work is to build up the capability of quasi-particle simulation (QuiPS), a novel flow solver, such that it can adequately model the rarefied portion of an atmospheric reentry trajectory. Direct simulation Monte Carlo (DSMC) is the conventional solver for such conditions, but struggles to resolve transient flows, trace species, and high-level internal energy states due to stochastic noise. Quasi-particle simulation (QuiPS) is a novel Boltzmann solver that describes a system with a discretized, truncated velocity distribution function. The resulting fixed-velocity, variable weight quasi-particles enable smooth variation of macroscopic properties. The distribution function description enables the use of a variance-reduced collision model, greatly minimizing expense near equilibrium. This work presents the addition of a neutral air chemistry model to QuiPS and some demonstrative 0D simulations. The explicit representation of internal distributions in QuiPS reveals some of the flaws in existing physics models. Variance reduction, a key feature of QuiPS, can greatly reduce expense of multi-dimensional calculations, but is only cheaper when the gas composition is near chemical equilibrium.